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140 Chapter 5 Central Limit Theorem

N ot all populations are normally distributed and the reader should not assume
them to be. However, for simplicity, the concepts in chapters 5 and 6 are
presented using mostly normal or near normal populations.

Nonnormal populations are introduced in section 5.4, then demonstrated in
chapters 7 and 8. ¥

m Central Limit Theorem

One of the most remarkable theorems in statistics is called the central limit
theorem, which is best explained through practical example.

Suppose a machine in a dress factory is set to cut pieces of silk material
exactly to the length of 1000 mm. The pieces are then to be assembled into an
outfit. Now, what are the chances the machine will cut every piece of silk material
to precisely 1000 mm? Quite slim. Most of the cuts will be in the vicinity of
1000 mm, however many pieces will be shorter and many longer. Experience
tells us that if a properly operating machine cuts millions and millions of pieces,
the histogram representing the lengths of all these pieces of material may very
well build into a shape closely resembling that of a normal distribution clustered
around the average length of = 1000 mm, and might look as follows:*

e
_|_ -
r M
Population I |=—— . distribution: millions
Histsosiri and millions of individual
u = 1000 mm pieces of silk material
' arranged according to length
T T T ; T
976 mm 988 mm 1000 mm 1012 mm 1024 mm
-2 -1 0 1 2

The standard deviation (o) of a population such as this will vary from machine
to machine. The speed of the cuts. even the length setting may affect the standard
deviation, but let’s say for our example we will *‘invent™ a standard deviation
of 6 = [2 mm.

Now let us suppose, from these millions and millions of pieces we randomly
select a sample of 36 pieces. Because our sample was randonly selected, we
know from section 2.4 that:

X=U The sample average is approximately equal to the population
average.
§=C The sample standard deviation is approximately equal to the

population standard deviation,

*A single machine operating properly and uninterrupted will often produce goods whose
measurement on a single characteristic, when recorded into a histogram, take on a shape
strongly resembling that of a normal distribution.
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So it should not be surprising that after we calculate ¥, the average length
of these 36 pieces in our sample, that this sample average (¥) might equal, say
for instance, 998 mm, shown below.

Population Histogram
p = 1000 mm
c= 12mm

¥, = 998 mm: average of 36 randomly
selected pieces

1 2

976 mm 988 mm 1000 mm 1012 mm 1024 mm
0

-2 -1

Since we know ¥ should be approximately equal to W, the question arises: would
998 mm be considered approximately equal to 1000 mm? In other words: how
close must X be to be considered approximately equal to u? For the answer to
this question, we must take additional samples of 36 and actually calculate the
values we get for ¥. So, we randomly select a second sample of 36, then a third
sample of 36, and even a fourth sample of 36. The new X’s (X», X3, and Xy) are
calculated and plotted along with X, in the following diagram.

Population Histogram
p = 1000 mm
o= 12mm

Four sample
averages

976 mm 988 mm 1000 mm 1012 mm 1024 mm
-2 -1 0 1 2

In the next sketch, we have added seven more sample averages (¥’s) to our plot.
Note how the sample averages (¥'s) begin to *‘pile up’* on the same readings,
all in the vicinity of 1000 mm.
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Population Histogram
W= 1000 mm
o= 12mm

f Many sampe averages

976 mm 988 mm 1000 mm 1012 mm 1024 mm
<3 =k 0 1 2

Now we run wild and randomly select thousands and thousands of sam-
ples, with each sample containing 36 pieces of material cut from the machine.
For each sample of 36 pieces, we calculate the sample average such that, now,
we have thousands and thousands of X’s. Why on earth would anybody want to
do this, you might ask? That’s a difficult question to answer,! but somebody did
and discovered something that, when put in combination with astute and sensi-
ble management, helped catapult numerous mid-sized businesses into giganti-
cally successful worldwide empires. Two such empires are Proctor & Gamble
and Intel. Management in these corporations use statistical techniques such as
these in marketing research and technical analyses on a routine basis.

Okay, we now have thousands of x’s. Now what? We group the results of
all these thousands of sample averages and arrange them according to length
into a small histogram (which we shall call the T distribution), which might
look as follows:

Small histogram
1, = 1000 mm

g,= 2mm

X distribution: several thousand
sample averages which
represent the total®

1012 mm 1024 mm

2

1000 mm

*Sampling distributions are based on the concept of sampling all possible different samples (of a fixed
size) from a population. However, even small populations produce enormous numbers of different
possible samples (refer to endnote 2 for detailed discussion). However, usually after randomly
selecting several hundred samples, the characteristics of a sampling distribution become quite clear.
Sampling distributions in this section can be generated using Microsoft Excel (Tools, Data Analysis).
For the given X distribution, fifteen thousand samples were randomly chosen, sample averages
calculated and these values organized into a histogram represented above as the X distribution. The
obtained values of py and o , the mean and standard deviation of one such sampling distribution,
matched calculated values (formulas on next page) to approximately two decimal places.?
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Perhaps now we can answer the question: how close does X have to be to
be considered approximately equal to p? We merely look at the results of the
thousands and thousands of samples taken. Almost every sample average (¥)
fell between 994 mm and 1006 mm. Are we saying it is impossible to get an x
of, say, 1012 mm? No, not impossible, but highly improbable. In all the thou-
sands of random samples actually taken, not one X even came near 1012 mm.
In fact, most of the X’s were clustered between 998 mm and 1002 mm with only
a small few as far out as 994 mm or 1006 mm. Incredible!

And another thing. Did you notice the shape of the small histogram? Yes,
a normal distribution. Which of course allows us to calculate areas that trans-
late into probabilities. And this leads us to Theorem 5.1.

¥ Theorem 5.1: Properties of the x Distribution, Given Samples
Drawn from a Normally Distributed Population

if all possible different samples of a fixed sample size n are drawn from a
normally distributed population with mean p and standard deviation ©, then
the distribution of X's will be normally distributed with mean y and standard
deviation 6 /Vn.

In other words, if the population is normally distributed, then

a. the ¥ distribution will be normally distributed regardless of sample size, and
b. the mean and standard deviation of the X distribution are as follows:

Mz =1
O = 6/Nn

¢. Furthermore, the z formula for the ¥ distribution would be:
Y-u
Oy

Note that this theorem holds true for all sample sizes, for instance n =2, n =3
or any fixed sample size n provided, again, the population is normally distrib-
uted.

“o_is often referred to as the standard error of the mean; however, we will simply call it the
smnddrd deviation of the ¥ distribution. Note: if the sample size n constitutes more than 5% of

the pepulation, thcn _ (j/ {N — n . The component J = .'! is referred to as the finite
N-1 N-

population correction factor.



144 Chapter 5

Example

Solution
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In our “cutting machine™ problem, since the population standard deviation (o)
is 12 mm and our sample size (n) is 36 pieces, 65 = 6/Vn = 12/V36 = 2 mm.
Let’s see how it works in the following example.

A machine in a dress factory cuts pieces of silk material to an average length of
p = 1000 mm with standard deviation ¢ = 12 mm. If one day we take a sample
of size n = 36 pieces and calculate the average length of these thirty-six pieces
and discover the sample average ¥ = 295 mm, (a) find the z score associated
with ¥ = 995 mm, and (b) based on this z score, would you suspect the machine
to be malfunctioning?

We do this problem as we would do any normal curve problem, only now we
are working in the ¥ distribution. First calculate o, the standard deviation of
the ¥ distribution, then construct a clear visual indicating values for at least +2
standard deviations in that distribution.

o 12 12

= =2mm
Vn V36 6

o

&

Sample average: ¥ = 995 X distribution: several thousand sample
i average: ¥ = 99¢

! i averages which represent
‘ ! I the total
e T |

1

996 mm 1004 mm ‘
988 mm 998 mm | 1002 mm 1012 mm
1000 mm

Next, we calculate the z score for a sample average ¥ = 995 mm.

__F-p_ 9951000 _
'_G\,, a 2 a

-2.50

a. The z score for sample average ¥ = 995 mm is —2.50,

b. Certainly, we would be suspicious, since any sample average ¥ more than
two standard deviations from p would be considered an unlikely occurrence
if the machine was cutting properly. The question arises: did this unlikely
occurrence occur or has p, the average cut on the machine, changed? [ |
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Theorem 5.1 is a specific case of a more general theorem as follows.

V¥ Central Limit Theorem

If all possible different samples of a fixed sample size n are drawn from a
population of any shape with mean y and standard deviation o, then the X
distribution will be normally distributed with mean p and standard deviation
o/n provided the sample size n is greater than or equal to 30. That is,
provided

n=z30

Thus, for any shaped population, provided n = 30

a. the ¥ distribution will be normally distributed, and
b. the mean and standard deviation of the X distribution are as follows:

Uy =n

G_T = 0',/\];1

Note that this theorem holds true for any shaped population provided n 2 30. It
is generally agreed among statisticians that a sample size of 30 or more is suf-
ficient to assume a normal X distribution. We will use this as our guide.

m Applying the Central Limit Theorem

The central limit theorem is one of the most remarkable achievements in statis-
tics. It brought statistics out of the Dark Ages. Until its discovery and subse-
quent widespread application (starting about 100 years ago) we had only been
able to estimate population characteristics with very large bodies of data—data
that often took months or years to gather and sort and was often outdated before
it was analyzed. Now we have at our disposal a precise mathematical way of
estimating what is happening now. And because of this we can make better
decisions. Let’s see how it works in the following two examples.

Rounding Technique for This Textbook

As a general rule, work in three decimal places throughout the entire
problem. Only round final answers to two decimal places. This rounding
technique is important to ensure that everyone arrives reasonably close to
the same answer. Use of the technigue will grow increasingly more critical
as we proceed through the material. Exception: z scores will always be
presented in two decimal places, even in calculations.
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The National Institutes of Health agreed to supply active disease viruses, such
as polio and AIDS, to research firms for the purpose of experimentation. A pro-
cess is set up to automatically fill millions of small test tubes to an average of
9.00 milliliters of disease virus with standard deviation .35 milliliters. If we
continually take random samples of 49 test tubes in each sample and calculate
the average fill, ¥, between what two values would you expect to find the middle
99% of all the sample averages (¥’s)?

Since we are concerned with the *‘average’’ fill of 49 test tubes and not with the
contents of one test tube, we use the ¥ distribution.

This is a typical **working backward (given the area, find )"’ problem for
the normal curve, only now we are dealing with the ¥ distribution so we must
first calculate oy, the standard deviation of the T distribution, and list values for
at least £2 standard deviations.

s s

/ X distribution

AN

8.90‘ [9,10
8 8.65 ml 8.95|9.05 9.35 ml &
9.00 ml

Since we know the area between the cutoffs is 99%, we merely look in the
normal curve table for the corresponding z scores. Remember; the table reads
“*half”’ the normal curve, so we must look up an area of 49.5% (% of 99%), which
in decimal form is .4950. ‘

According to the table,
the corresponding z scores are
—2.58 and +2.58 (note that
4950 fell precisely midway be-
tween two values in the table;
in these cases, we round to the
higher z score).

X distribution

49.5%
(5 of 99%)

49.5%
(} of 99%)

-2.58 0 +2.58 Z scores
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Substituting —2.58 and +2.58 into our formula, we solve for the cutoffs:

X1 o x-p
i Ox . Oz
x = 9.00 X — 9.00
—258 = — +258 = ——
.05 .05
Solving for x: Solving for ¥:
x = 8.87 ml Xx=9.13ml

Graphically, the solution would appear as follows:

~—x distribution

990G —]

Pt distribution: several thousand sample
averages which represent

the total
¥=887ml| x=9.13ml
8.30 8.65 z=-2.58 z=+2.58 9.35 9.70
9.00 ml

If we continually take random samples of 49 test tubes in each sample, and
calculate the average fill (¥) in each of these samples, then 99% of all the sample
averages (T's) would be expected to fall between ¥ = 8.87 ml and X = 9.13 ml.

|

It is probably safe to say, if you randomly sample 49 test tubes from a
properly functioning process, the average fill (¥) of this sample will fall between
8.87 ml and 9.13 ml. On any given day, if you obtain a sample average much
outside this range, you might very well suspect the process is malfunctioning.
Of course, we must keep in mind that 1% of the time (100% minus 99%), or
approximately 1 out of every 100 times, a properly functioning process will
produce a sample average (X) outside this range, but since this is such a “rare’’
occurrence, it is probably wiser to check your filling operation for a malfunction.
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Along with the value 95%, industry and research often use this value of
99% to establish a criteria for whether or not an operation may be malfunctioning.
This is discussed at length in chapter 6.

Brell Shampoo, an **in-house’” brand, is marketed along with various other sham-
poos through a large national chain of convenience stores. In these stores, Brell’s
market share has remained relatively constant at L = 24.00 (meaning: on average
24.00% of the shampoo sold in these stores is Brell) with standard deviation 3.20.
If we continually take random samples, each consisting of 64 stores, and calculate
the average market share (¥) for each sample, what percentage of the sample
averages (X's) would you expect to have a market share of less than 23.807

Since we are concerned with the “‘average’’ market share in 64 stores and not
the market share in an “‘individual’” store, we use the ¥ distribution. Remember:
when using the X distribution we must first calculate o+, the standard deviation
of that distribution.

07 = == 3:'21 = % = .40 market share \

A distribution
/K

’ 24.80
2050 23.60 | 24.40 &2
24.00 market share

Next, we calculate the z score at the cutoff of ¥ = 23.80:

,_X-M_2380-2400
O3 40

Since the area from z = 0 to z = —.50 is 19.15%, the area below z = —.50 must
be 30.85% (50% minus 19.15%).
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Graphically, the solution would appear as follows:

S distribution

19.15%
30.85% K—.r distribution
=]
x=23.80

17.60 20.80 z=-.50 27.20 30.40
24.00 market share

If we continually take random samples, each consisting of 64 stores, and calculate
the average market share (x) for each sample, then 30.85% of all the sample
averages (X's) would be expected to have a market share of less than 23.80. g

At this point a reminder may be needed: in the above problem concerning
Brell Shampoo, we are not dealing with the market share in one outlet. We are
dealing with the average market share in 64 randomly selected store outlets. The
market share in one store can easily be, say, 19.00. However, the chances that
the average market share in 64 randomly selected stores being 19.00 is nearly
impossible.

Random Selection

Another reminder: the above mathematical procedure, or any mathematical pro-
cedure we discuss involving sampling, is based on the critically important process
of random selection. Samples are chosen, in a way, similar to how lottery winners
are selected. Each person (or store, in our case) has an equal chance of being
selected on every pick. For instance, if you drive through Delaware and select
64 store outlets, this is not a random sample and these mathematical procedures
cannot be used. For a random sample, you must have access to every store outlet
in the country on each and every pick, say for instance, through a master list of
all the stores. Then, each selection must be made as if **blindfolded,”” such that
each store has an equal chance of being picked (see chapter 1 for further
discussion).
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m How n and ¢ Affect o,

The standard deviation of the ¥ distribution, o+, is influenced by two factors. The
first is o, the population standard deviation, and the second is 7, the sample size,
according to the formula o7 = o/ /n.

How ¢ Affects o;

The relationship between ¢ and o is direct. If ¢ increases, Oy increases. If ¢
decreases, oy decreases. Furthermore, 6 and 6= increase or decrease in the same
multiple. In other words, if ¢ doubles, o; doubles. If & triples, o5 triples. If &
and or are respectively 12 mm and 2 mm, and © quadruples to 48 mm, then o5
quadruples to § mm.

In practical terms, however, ¢ is a fixed item. One normally cannot
manipulate the population standard deviation, o, to influence O5. But its rela-
tionship to oz is still important for an understanding of advanced work.

How n Affects o;

The relationship between your sample size, n, and o+ is more complex and of
more concern since we can often control n. Note that o varies inversely as the
square root of n according to the formula

(0]
GT:_F'A

F

First, this means, as n increases, o decreases.

Second, this means, as n increases to 4 times its original value, o5
1 ¥ o
decreases to ——E— or p its original value.
V

If n increases to 9 times its original value, then o; decreases to

1 1

——= or — its original value.
/573 B

W

If n increases to 16 times its original value, then Oy decreases to

1 1
or — its original value.
J16 °

4
And so on.

To understand the impact of increasing sample size, let us again use the cutting
machine problem in the following example.
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Using the cutting machine problem with i = 1000 mm and ¢ = 12 mm, compare
the ¥ distribution when you change your sample size from 36 pieces in each
sample to four times this value (144 pieces in each sample) and then again to
sixteen times this value (576 pieces in each sample).

If we continually take random samples of size »

tribution would have a standard deviation o7 =

For sample size

3]

2

36, then the resulting ¥ dis-

= 2 mm.

N

=3
H=0 ¥ distribution
for n = 36
988 mm 996 mm 1004 mm 1012 mm
998 mm | 1002 mm
1000 mm

If we continually take random samples of size »

= 144, then the resulting ¥

12
distribution would have a standard deviation o3 = \/ﬁ = 1 mm.

For sample size

M Note: as n increased (o 4 times
its original value, o;
decreased to % its original
value (from 2 mm to | mm).

n=144 ¥ distribution
forn =144
988 mm 998 mm| | (1002 mm 1012 mm
999 mm| 1001 mm

1000 mm
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If we continually take random samples of size n = 576, then the resulting x

ol i e - 12 1
distribution would have a standard deviation o~ = =

_\/5_76 = ?mm.

N o ; g
o Note: as n increased to 16 times
For sample size its original value, o,
B:=376 o i decreased to 7 its original
¥ distribution value (from 2 mm to + mm).
) forn =576 -
g J LIHOI mm
988 mm )()QL R . 1012 mm

9995 mm — [~ 10005 mm

1000 mm

Note that a substantial increase in the sample size (1) is necessary to pro-
duce only a modest decrease in 6. We had to increase our sample size to 16
times its original value (from 36 picces to 576 pieces) to decrease o5 to - of its
original value (from 2 mm to + mm).

To fully understand the impact of sample size changes, let’s see how it
affects the location of the middle 95% of the X's in the next problem. |

Example —————  Usingthe cutting machine problem with @ = 1000 mm and ¢ = 12 mm, calculate
where the middle 95% of the ¥'s would be expected to fall for the three situations
in the last example, that is, for n = 36, for n = 144, and for n = 576.

Solution The completed solutions are as follows:
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_d

l— 050, —

- distribution

=\

/S forn =36
.

How n and ¢ Affect o

X =996.08 mm
z=-1.96

r=1003.92 mm

+1.96

988 mm

/ 95%
Forn =144

1000 mm

X distribution

\)l/\ forn =144

1012 mm

X =998.04 mm
z=-1.96
988 mm

For n=1576

1000 mm

]

X =1001.96 mm
z=+1.96

95%

A distribution
for n =576

1012 mm

¥=999.02 mm

988 mm

—.—i\

!

x=1000.98 mm
z=+1.96

1000 mm

1012 mm

153
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Notice the extreme compression of the ¥'s when you increase your sample
size to 16 times its original value. At n = 36, note that 95% of the ¥’s clustered
between 996.08 mm and 1003.92 mm. However, at n = 576, the sample averages
(X’s) drew in closer to 1000 mm, with 95% of the ©'s now clustered between
999.02 mm and 1000.98 mm.

The importance of this compression of X's when the sample size is increased
will become apparent when we discuss controlling statistical errors in chapter 6.

Central Limit Theorem Applied
to Nonnormal Populations
The amazing thing about the central limit theorem is that it applies to any

shaped population (normal or nonnormal), provided your sample size is 30 or
more (n 2 30). That is,

The X's will distribute normally around p for any shaped population,
provided

nz30

Let’s look at some examples.

Population .
P Population

- distribution

for n = 30 \_

,— X distribution
for n 12 30

4,— Population

,— Population

,— distribution
forn = 30

,—\ distribution
forn =30

n u
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Note that in all cases, when the sample size was 30 or more (n 2 30), the
+’s distributed normally around u. And we can use the methods and techniques
described in this chapter to predict where the X’s will fall. Does this imply the
%'s will nor distribute normally around p if » is less than 30 (n < 30)? Yes and
no. If your population is normal, the X’s distribute normally around p no mat-
ter what the size of n (even for n = 5 or n = 2). However, for many nonnormal
populations, the ¥’s do not assume the normal shape unless the sample size is
at least 20 or 25 or in some extreme cases much more. A good rule of thumb is,
assume the ¥’s normally distributed for sample sizes of n = 30, unless the pop-
ulation has a highly unusual shape (say for instance, an extraordinarily skewed
distribution), in which case, n may have to be more than 30 to ensure a normal
T distribution. Further discussion on this is in sections 7.3 and 8.4.

Summary
Central limit theorem: For any shaped Factors that affect oy, the spread of the X distribution,
population, if you were to select all possible are as follows.
different samples of a fixed sample size greater G affects the spread directly, that is, if &

than 30, the sample averages (¥’s) would build
into the shape of a normal distribution, called

increases to three times its value, or will
increase to three times its value.

an ¥ distribution, such that:

1. The mean of the X distribution is u, the mean of

the population, and

2. The standard deviation of the X distribution,

n affects the spread inversely as its square root.
If n increases to 16 times its value, then Of
will decrease to 1/N16 or 1/4 its value.

The amazing thing about the central limit theorem

called sigma x-bar (G;) is ?qual to the population is that it applies to almost any shaped population
standard deviation (o) divided by the square root provided the sample size is equal fo or greater

of your sample size (n). In other words,

Any shaped population

(6]

X

x distribution
for n = a fixed number = 30

than 30. In other words, the ¥’s will distribute
normally around u for almost any shaped
population provided.

%la

n =30

~— X distribution
n = a fixed number = 30

[y 1
Theorem 5.1: Furthermore, if the population is Only in populations with quite unusual shapes
normal, the ¥ distribution will be normal for any (such as one with a highly extended skew) may
s g S

sample size,evenn =2, n1=3 and so on.

we have to sample sometimes more than 30 to be
assured of a normally distributed X distribution.
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Exercises

Note that full answers for exercises 1-5 and
abbreviated answers for odd-numbered exercises
thereafter are provided in the Answer Key.

5.1 A machine cuts pieces of silk material to an
average length of 1000 mm with standard deviation
12 mm. Between what two lengths would we expect
to find the middle 95% of all the sample averages
(x’8)?

Assume sample size:

a. n = 36
b. n = 144
c. n =576

5.2 A machine cuts pieces of silk material to an
average length of 1000 mm with standard deviation
12 mm. Between what two lengths would we expect
to find the middle 99% of all the sample averages
(x’s)?

Assume sample size:

a. n =36
b. n = 144
c. n =576

5.3 A national institute supplies active disease
viruses for medical research. A process is set to fill
small test tubes al an average of 9.00 ml with
standard deviation of .35 ml. If we continually take
random samples of 49 test tubes in each sample,
what percentage of the s would you expect to fall
below 8.92 ml or above 9.08 ml?

5.4 Brell Shampoo, an *“‘in-house’’ brand, is
marketed through a large national chain of
convenience stores. This chain also carries other
national brands of shampoo. Brell’s ““in-house”’
market share is 1 = 24.00 (meaning: on average
24.00% of the shampoo sold in these stores is Brell)
with standard deviation 3.20. If we continually take

random samples, each sample consisting of 64 stores,

and calculate the average market share (¥) in each
sample, below what market share would we find the
lowest 1% of all the sample averages (X’s)?

5.5 The credit manager of a large sports shop made
a stalement at an important board meeting that the
average age of their customers is 32 years old with
standard deviation 4 years.

a. If the credit manager is correct and we were to
continually take random samples of 100 customers
each, what percentage of the X’s would you expect
to be between X = 31.5 years old and ¥ = 32.5
years old?

b. If the credit manager is correct and we were to
take one random sample of 100 customers, what is
the probability the average of this one sample ()
would be between 31.5 years old and 32.5 years
old?

c¢. Between what two ages would you expect to find
the middle 95% of all the sample averages (¥’s)?

5.6 Gaunt Health Farms, based on a survey of
records of all visitors for the last five years, claim an
average weight loss of 12.0 Ib with standard
deviation of 2.4 1b.

a. If you took a random sample of 36 from these
records, what is the probability the sample
average (X) will be less than 11.0 1b?

If you took a random sample of 36 and your
sample average, X, was indeed less than 11.0 Ib,
would you be suspicious of their claim that the
average visitor weight loss is 12.0 1b?

&

5.7 Bad-debt accounts are a serious source of profit
drain for all businesses, but especially for the fashion
industry, which deals with the risky whims of the
public. Ralph Weetz Co., a distributor of women’s
blouses to small boutiques, was one such company.
A computer tally of all bad-debt accounts of the past
few decades reveals an accumulation of thousands of
bad-debt accounts, with the average amount owed of
K = $550.00 and standard deviation ¢ = $75.90.

a. Assuming a normal distribution, if we randomly
selected one bad-debt account, what is the
probability this one bad-debt account is between
$538.00 and $562.00?



b. If we took a random sample of 40 bad-debt
accounts and calculated the average amount owed
(X) in this sample, what is the probability this
sample average (X) will be between $538.00 and
$562.00?

¢. Assuming n = 34, with what probability can we
assert a sample average (X) will fall within $20.00
of w = $550.00?7

5.8 A nationwide marketing study concluded the
average age of horror film moviegoers is 17.4 years
old with standard deviation 2.7 years.

a, Assuming a normal distribution, what percentage
of horror film movie goers nationwide would you
expect to be over 18.0 years old?

b. If we continually take random samples of 81
horror film movie goers nationwide and calculate
the sample average (X) for each sample, what
percentage of the sample averages (X's) would
you expect to be over 8.0 years?

c. If you took a random sample of 81 horror film
movie goers, what is the probability the sample
average (¥) would be over 18.0 years?

5.9 In a certain year, the nationwide SAT verbal
score averaged U = 430 with standard deviation

o = 96. Answer the following assuming SAT scores
are continuous over the scale 200 to 800.

a. Assuming a normal distribution, between what
two values would you expect to find the middle
90% of SAT verbal scores?

b. If we continually take random samples of 144
students, and calculate the average SAT verbal
score (X) in each sample, between what two
values would you expect to find the middle 90%
of the sample averages (1’s)?

c. If we continually take random samples of 42
students, and calculate the average SAT verbal
score (V) in each sample, between what two
values would you expect to find the middle 90%
of the sample averages (¥’s)?

5.10 [n a certain year, the nationwide SAT
mathematics score averaged i1 = 470 with standard
deviation ¢ = 96. Answer the following assuming
SAT scores are continuous over the scale 200 to 800.
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a. Assuming a normal distribution, between what
two values would you expect to find the middle
98% of SAT mathematics scores?

b. If we continually take random samples of 256
students, and calculate the average SAT
mathematics score (Y) in each sample, between
what two values would you expect to find the
middle 98% of the sample averages (X's)?

c. If we continually take random samples of 30
students, and calculate the average SAT
mathematics score (X¥) in each sample, between
what two values would you expect to find the
middle 98% of the sample averages (x’s)?

5.11  Medical doctors in Kansas City are known to
work on average L = 54.7 hours per week with
standard deviation 6 = 6.8 hours.

a. Assuming a normal distribution, what is the
probability a doctor will work less than 53.0
hr/wk?

b. What is the probability a random sample of 55
doctors will yield an average, X, of less than 53.0
hr/wk?

¢. With what probability can we assert a random
sample average (X) will be between 53.0 and 56.0
hr/wk, based on n = 55?7

5.12 A survey indicated the average yearly salary
of entry-level women managers in St. Paul to be
u = $56,700 with standard deviation ¢ = $7,200.

a. Assuming a normal distribution, what is the
probability a woman manager’s entry-level salary
will exceed $58,0007?

b. What is the probability a random sample of 50
women managers will yield an average entry-level
salary (¥) exceeding $58,0007?

¢. Assuming n = 50, with what probability can we
assert a sample average (X) will fall between
$55,000 and $58,000?7

d. Assuming n = 42, with what probability can we
assert a sample average (x) will fall within $1500
of p = $56,700?
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Endnotes

Central Limit Theorem

1. Actually, the earliest experiments were
based on Carl Gauss’s work on measurement
error in the field of astronomy (1809, 1816,
1823; Encke, 1832, 1834). Laplace formulat-
ed the theoretical underpinnings (1810-1812)
and, later, experiments in biological measure-
ment, agriculture and machine output con-
firmed these early findings.

2. Sampling distributions are based on the
concept of sampling all possible different
samples (of a fixed sample size) from a
given population. Theory assumes that
each sample is drawn without replacement
and the pieces of material returned to the
population and the process repeated until
all possible different samples are obtained.
However, even small populations using
small sample sizes yield enormous num-
bers of different possible samples. For
instance, a population with only N = 52
values using sample sizes of n = 5 produce
approximately 2.6 million different possi-
ble samples. Ask anyone who plays the
card game 5-card poker. From a deck of 52
playing cards, a person is dealt a random
selection of 5 cards. There are C(52,3) =
2.598.960 different possible hands. In sta-
tistics, four aces and the two of clubs is
considered a different hand (or a different

Example A

Population
(lengths of
one million
cut pieces, 1
in mm)
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|
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sample of #n = 5) than four aces and the
three of clubs.

In the “cutting machine” example present-
ed. suppose the population had 1,000,000
values (that is, the lengths of one million
pieces of material) and when plotted
looked as shown in Example A below.

If we continually draw samples of size
n = 36 pieces, then C(1000000,36) = 10'74
different samples are possible. To give you
a feel for the magnitude of the number
10'7%, it is thought the entire universe con-
tains less than 10" atoms. In fact, if we
plotted 10'7* sample means on the same
frequency scale as the population, it might
look as shown in Example B below.

Note that even the tails of the population
produce an enormous number of different
possible samples. For instance, the 50
smallest population values indicated by
the box in the lower left corner of the
sketch produce C(50.36) = 10'? different
possible samples. Thus we would have to
plot 10'2 sample averages (X's) at the very
tail of the population. Keep in mind, the
entire population histogram below con-
tains only 10° values which represent the
lengths of the pieces of material.

Example B
FREQUENCY
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(lengths of
one million
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To present the entire 10'7* sample means
on the same frequency scale as the popula-
tion would produce an X distribution rising
to a height out of our known universe.

In the representation we presented in sec-
tion 5.1, we used fifteen thousand sample
averages generated by computer simula-
tion to represent this total. As we would
expect, most X’s clustered rather close to p.

Often in the literature, sampling and pop-
ulation distributions are presented as prob-
ability distributions (or probability density
functions). that is, each distribution is said
to contain an area (a probability density)
of 1.00, no matter how many values are
contained in the distribution. Since both
the population and sampling distribution
contain the same area (1.00), the use of
overlapping sketches can be awkward and
often the two distributions are separated.
This allows for a number of advantages,
however, it forgoes the opportunity of
directly comparing the standard deviations
of the two distributions on the same scale.
For this and other instructional purposes.
we represent all sampling distributions as
modified frequency sketches: several
thousand sample values which represent
the total.

SH.'HPI’P means or
X distribution
all the sample means
from all the ‘different
- possible samples
(of size n = 36)
that can be drawn
from this population,

,m'_m]ﬁﬂmmm
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